Copied to
clipboard

G = C6xC42:C3order 288 = 25·32

Direct product of C6 and C42:C3

direct product, metabelian, soluble, monomial, A-group

Aliases: C6xC42:C3, (C4xC12):6C6, (C2xC42):C32, C42:3(C3xC6), C23.5(C3xA4), C22.1(C6xA4), (C22xC6).11A4, (C2xC4xC12):C3, (C2xC6).9(C2xA4), SmallGroup(288,632)

Series: Derived Chief Lower central Upper central

C1C42 — C6xC42:C3
C1C22C42C4xC12C3xC42:C3 — C6xC42:C3
C42 — C6xC42:C3
C1C6

Generators and relations for C6xC42:C3
 G = < a,b,c,d | a6=b4=c4=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, dcd-1=b-1c2 >

Subgroups: 276 in 68 conjugacy classes, 20 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C2xC4, C23, C32, C12, A4, C2xC6, C2xC6, C42, C42, C22xC4, C3xC6, C2xC12, C2xA4, C22xC6, C2xC42, C3xA4, C42:C3, C4xC12, C4xC12, C22xC12, C6xA4, C2xC42:C3, C2xC4xC12, C3xC42:C3, C6xC42:C3
Quotients: C1, C2, C3, C6, C32, A4, C3xC6, C2xA4, C3xA4, C42:C3, C6xA4, C2xC42:C3, C3xC42:C3, C6xC42:C3

Smallest permutation representation of C6xC42:C3
On 36 points
Generators in S36
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 4)(2 5)(3 6)(7 35 10 32)(8 36 11 33)(9 31 12 34)(13 16)(14 17)(15 18)(19 30 22 27)(20 25 23 28)(21 26 24 29)
(1 16 4 13)(2 17 5 14)(3 18 6 15)(19 27 22 30)(20 28 23 25)(21 29 24 26)
(1 31 21)(2 32 22)(3 33 23)(4 34 24)(5 35 19)(6 36 20)(7 27 17)(8 28 18)(9 29 13)(10 30 14)(11 25 15)(12 26 16)

G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,4)(2,5)(3,6)(7,35,10,32)(8,36,11,33)(9,31,12,34)(13,16)(14,17)(15,18)(19,30,22,27)(20,25,23,28)(21,26,24,29), (1,16,4,13)(2,17,5,14)(3,18,6,15)(19,27,22,30)(20,28,23,25)(21,29,24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,27,17)(8,28,18)(9,29,13)(10,30,14)(11,25,15)(12,26,16)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,4)(2,5)(3,6)(7,35,10,32)(8,36,11,33)(9,31,12,34)(13,16)(14,17)(15,18)(19,30,22,27)(20,25,23,28)(21,26,24,29), (1,16,4,13)(2,17,5,14)(3,18,6,15)(19,27,22,30)(20,28,23,25)(21,29,24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,27,17)(8,28,18)(9,29,13)(10,30,14)(11,25,15)(12,26,16) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,4),(2,5),(3,6),(7,35,10,32),(8,36,11,33),(9,31,12,34),(13,16),(14,17),(15,18),(19,30,22,27),(20,25,23,28),(21,26,24,29)], [(1,16,4,13),(2,17,5,14),(3,18,6,15),(19,27,22,30),(20,28,23,25),(21,29,24,26)], [(1,31,21),(2,32,22),(3,33,23),(4,34,24),(5,35,19),(6,36,20),(7,27,17),(8,28,18),(9,29,13),(10,30,14),(11,25,15),(12,26,16)]])

48 conjugacy classes

class 1 2A2B2C3A3B3C···3H4A···4H6A6B6C6D6E6F6G···6L12A···12P
order1222333···34···46666666···612···12
size11331116···163···311333316···163···3

48 irreducible representations

dim11111133333333
type++++
imageC1C2C3C3C6C6A4C2xA4C3xA4C42:C3C6xA4C2xC42:C3C3xC42:C3C6xC42:C3
kernelC6xC42:C3C3xC42:C3C2xC42:C3C2xC4xC12C42:C3C4xC12C22xC6C2xC6C23C6C22C3C2C1
# reps11626211242488

Matrix representation of C6xC42:C3 in GL3(F13) generated by

400
040
004
,
083
821
3212
,
500
1202
794
,
320
0116
0112
G:=sub<GL(3,GF(13))| [4,0,0,0,4,0,0,0,4],[0,8,3,8,2,2,3,1,12],[5,12,7,0,0,9,0,2,4],[3,0,0,2,11,1,0,6,12] >;

C6xC42:C3 in GAP, Magma, Sage, TeX

C_6\times C_4^2\rtimes C_3
% in TeX

G:=Group("C6xC4^2:C3");
// GroupNames label

G:=SmallGroup(288,632);
// by ID

G=gap.SmallGroup(288,632);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,514,360,3476,102,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=c^4=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<